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POSITIVE COLUMN OF AN ELECTRIC ARC WITH A 

GIVEN POWER DENSITY DISTRIBUTION OF INTERNAL 

HEAT SOURCES 

R. Kh. Ismagilov, Kh. G. Kiyamov, 
and N. G. Sabitova 

UDC 533.932 

An analytical solution is obtained for the nonlinear boundary-value problem describing heating 
of gases in the positive column of an arc with current and gas consumption varying along a 
channel for a given power density distribution of the internal heat sources. 

To assure  optimal reaction conditions in plasmachemical  reac to rs  it is often necessa ry  to distr ibute 
the power density of the internal heat sources  in a definite manner  along the channel length. An analogous 
situation holds in processes  for t reat ing different powders and mater ia ls  in an arc  plasma. The most  natural 
way to solve this problem is to change the current  intensity, the size of the arc  chamber ,  and the gas consump- 
tion along the length of the positive column. Such plasmatrons can be called electr ic  arc  heaters  with d i s t r i -  
buted pa ramete r s ,  which are  of interest  both f rom the viewpoint of ra is ing the p lasmatron  r e sou rces ,  and 
from the optimal distribution of heat fluxes [1, 2]. 

The power density distribution of the heat sources  can be given, in many cases  of pract ical  importance,  
by the conditions of the technological p rocess .  However,  the current  distr ibution would be unknown in advance; 
hence, there is a necess i ty  to solve the problem for a given power density distribution. Such a problem is also 
urgent f rom the viewpoint of designing plasmachemical  reac to rs  and a number of other e lectr ic  arc  devices.  

The system of equations 

h~pu OS h~pv aS 1 

l ' - a z  - f - ' R  ar = R 2 - - - -  

t 0 ! 
l 

r § %EzS  - -  e f t ,  (1) 
r Or ~ r  

! O 
- -  a--z- ( p u ) - } -  R r Or ( r p v ) = O ,  (2 )  

I (z) ~ 2=R=%E (z) S Srdr, 
o (3 )  

describing the heating of gases in a positive arc column with gas consumption and current distributed along 
the channel length [3, 4], is solved under the boundary conditions 

S (r, O) = ~ (r/S), S~ (0, z) = 0, S (~, z) = 0, v (0, z) = O. (4) 

A. N. Tupolev Kazan Aviation Institute. Translated f rom Inzhenerno-Fiz icheski i  Zhurnal,  Voi. 41, No. 
1, pp. 105-111, July,  1981. Original ar t ic le  submitted April 8, 1980. 
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Let us consider the case of a linear change in the gas consumption across the arc section 

9u = G-2-~ R r (z), R r (z) = ~z (z___~) , (z (z) = 1 -{- klz. (5) 
aR ~ ~ (z) 

Taking account  of (2) unde r  the condi t ions  (4) and (5), Eq. (1) is r educed  to the f o r m  

~ O S  ~flz OS a 2 O ( O S ~  
. . . . .  r r + eElS - -  bS, (6) 
Oz 2 Or r Or ~ ) O ~ -  

a z = al/Goh~, o = a2R2%, b = a2R2%. 

Subst i tut ing the e x p r e s s i o n  for  the e l e c t r i c  field in tens i ty  f r o m  (3) into (6) r e su l t s  in a nonl inear  i n t eg rod i f f e r en -  
tial equation whose solution is accompanied by significant difficulties. However, the insertion of a function U 

defined by the relationship 

S (r, z) = U (r, z) exp cE 2 -  b dz (7) 
Rr 

0 

permits obtaining the linear equation 

ga OU W z 8U aZ 8 { 8U~ 
az 2 ar r ar ~ ] T  

f r o m  (6), which is reduced  by the change of va r i ab le  x = z, rj = r2/~2(z) to the f o r m  

a(x) 8U =4a2 0 ( O_~ ) 8U 
0-7 07  + k t n aN" 

Let us apply the integral transform 

1 

~7(7, x) = .[ u (q, x) P (h) K (~, 7)d~ 
0 

to  (8). H e r e  P(~) is a weight  funct ion r educ ing  the d i f fe ren t ia l  o p e r a t o r  of the r igh t  s ide of (8) to the s e l f -  
adj oint f o r m  

(8) 

(9) 

In our  case  

a (q au 

) - -  4a 2 ~1 , g (~1) = 4a2~1P (q). 

The integral transform of the right side of (8) yields 

1 

0 

(k, ) K (q, 7) drl = 4a'~l exp 4-a- 7 ~1 

X 

I 

0 

The transformed equation will not contain integral terms if 

O-O-- [ 4a2~l exp ( ~a~ ~l ) - ~  J = - -  a2v2K (~' 7) P 

where u 2 is a quantity independent of t}. Taking account of (9) and (ii) we find 

1 

0 

a2v2U(7, x). 

(lO) 

(11) 
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Using (4), the terms outside the integral in (i0) can vanish if compliance with the conditions 

02)  
K (1, 7) = o, /( (0, 7) = 

is demanded. We take the relationship (11) as a differential equation governing the kernel of the integral 
t ransform.  Replacement by the variable r = -k l ' q /4a  2 reduces (11) to the differential equation of a degenerate 
hypergeometr ic  function 

02K OK v2a 2 
T - - -  + ( l - - x )  K = 0 .  

0"~ 2 0"~ ~ kl 

Therefore ,  the degenerate hypergeometr ie  function 

(13) 

K~ (n) = Q , 1 ,  - -  -~-  
(14) 

is the solution of (11), where  u~ n are the eigenvalues of (13) assur ing satisfaction of the boundary conditions 
(12), and Kn(~) are  the eigenfunctions corresponding to the eigenvalues of the problem (11), (12). The eigen- 
values are determined f rom the solution of the equation 

where g = k l / a  2 is a dimensionless blowing parameter .  

The eigenfunctions Kn0?) corresponding to different eigennumbers are  pairwise orthogonal with weight 
P(~) in the interval 0 _~ 7) _< 1. It hence follows that eigenfunctions normalized with the same weight satisfy 
the condition 

' {0,1, ir ~- ]. K, (n) Ks(n)P  (n) an = 

We take the orthonormaltzed eigenfunctions Kn(7/) as the kernel K(~, 7).  Then the integral t r ans fo rm 
of the left side of (8) yields 

# 

1 

S ou d ~],, (x). 
0 

Combining the results  of the integral t r ans fo rms ,  we obtain the differential equation in the t r ans forms  

whose solution will be 

(x) d ~  (x) = _ a~,] O~ (x), 
dx 

U--~(x)=LT~(0)exp - -  a ~ d x . 
, ~ (x) 
0 

If the function U(~, z) is such that the integrai 

1 

S U2 (n, x) P (n) dn 
0 

(15) 

exists and is bounded uniformly relat ive to the set of values that can be taken by the parameters  fl and x, then 
the function U(~, x) can be represented in the form of the ser ies  

u (n, x) = 2 u~ (x) K~ (~), 
n=l (16) 

1 

U,~ (x) = S U (rl, x) Kn (1]) P (~q) drl, 
0 
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where the equality is understood in the sense of convergence in the mean [5]. From a comparison of (16) and 

the integral transform (9) for the desired function U(g, x) it is seen that we should set K(~, T) = Kn(~). Here 

Kn(~) are eigenfunctions of the problem (ii) and (12). The integral transform of the function U(~, x) agrees 

with its n-th coefficient of the series expansion in eigenfunctions of this problem [5]. The mutual one-to-one 

relationship between the function and its integral transform results from the uniqueness of the expansion (16). 

Therefore, the series (16) is a solution of (8) and the coefficients of the series Un(x) agree with (15). Substi- 

tuting (14) and (15) into the series (16), we obtain 

U(% x)-- U-,, exp ~ - - -  dx ,  cI)~ , 1 - -  ~ l  �9 

n = I  O 

The coefficients Un(0) are determined from the boundary conditions in the initial section for x = 0, i.e., 

U01, O)== <p(]/'~)== A,fl),~ ( ~ ,  1, - T q  , 

A,, == U,, (0)15I),,'I =: (qo (1/-q),  {D.)/(q),,. (I).) 

I 

((9(V~), q ~ , ) =  qo(]/-~(l),~ ] , -  q P(q) d G, 
0 

I 

llO,,IP = ( r  q),,) -= r  , I ,  - - ~ -  , 

0 

Making the transition from the variables x, rl to z, r and taMng account of (7), we find 

Ii ) S (r, z) = exp -~ -  dz 

0 

s -- 

v ' I T '  - -  4 
0 n =  1 0 

(i7) 

Multiplying (3) by E, we obtain an expression for the power density distribution of the heat sources 

N (z) = 2aR2%E ~ j' Srdr. 
0 

( 1 8 )  

From (17) and (18) we find a nonlinear equation for the electric field intensity 

z 

N (z) = 2aR2%E z (z) F (z) exp ~ dz . 

0 

Here 

F (z) -- exp s -~- dz liq~.l 1 
0 n = l  

1 

y~=  (D~ '~ , 1 , - - - -  
0 

Let us represent it as follows: 

from which it follows that 

exp 
0 

[3 r z') rdr. 
4 

2nR2% F (z) g (z) - -~  exp -~-  dz dz, 
0 0 0 

[ N(z) ] o , S [ l +  aZ ; N(z) dz ] -o,5 
E(z)=  [ 2~R2%F (z) ~-~ F (z) ~-~z) ] 

0 

(19) 
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Substituting (19) into (17) yields, after simple manipulation, a formula to compute the distribution of the heat- 
conduction function 

S(r, z) = 
a 2 N (z) dz exp - - ,  

14- ~ F (z) W (z) ~ -  dz • 
0 0 

Z IJn(O) n dz ~ r2 x . 
i l e a l - -  , a ( z) 4 ~2 

m 

n = l  0 

(20) 

The distribution of the current intensity along the channel length that corresponds to a given power dis- 
tribution is defined as 

a2 ; N (z) dz ] ~ 
I(z)= [2z~R2%F(z) N(z) (1+2-~ F(z) ~F) 

0 

(21) 

The practical realization of the current distribution obtained is difficult technically. However, an approximate 

current distribution along the channel length can be obtained in a multielectrode plasmatron. A refined analysis 
of the given current distribution can be performed as follows. We obtain an integral equation for E from (3) 
and (18) 

0 

whose solution will be 

z 

2~R2GF (z) [ F (z) ~4zc2R~(~ + 1 . 
0 

Eliminating E(z) from (17), we obtain a formula to compute the distribution of the heat-conduction function 

S(r ,  z) = 1 4- , [ - - ~ J  4~2R~o2 XF(z)J x 
0 

[[q~,(--  . dz q0~ k ~ , 1, 4 ~2 " 
n =  l 0 

(22) 

The power per unit length of the positive column will be 

z 

0 

The heat fluxes through unit length of positive column arc are determined by the relationship 

l (z)  % 2 ~  aS I 
q == q~ 4- qr = E (z) as ~ -r  b=~ 

The f o r m u l a s  ob ta ined  p e r m i t  c o m p u t a t i o n  of the  e l e c t r i c a l  and t h e r m a l  c h a r a c t e r i s t i c s  of  the  c o l u m n  as  a 
funct ion of  the  gas  p r o p e r t i e s  and c o n s u m p t i o n ,  of the  d i s t r i b u t i o n s  of the  gas  c o n s u m p t i o n  and the c u r r e n t ,  
of the  i n i t i a l  d i s t r i b u t i o n  of the  h e a t - c o n d u c t i o n  funct ion  and the  s i z e  of the  a r e  c h a m b e r .  The f o r m u l a s  o b -  
t a ined  a r e  a l s o  va l id  in t h o s e  c a s e s  when ~s and e s v a r y  s i g n i f i c a n t l y  o v e r  the  length  of the  p o s i t i v e  co lumn .  

N O T A T I O N  

I,  E ,  e l e c t r i c  f ie ld  c u r r e n t  and in t ens i t y ;  R,  1, channe l  r a d i u s  and length ;  r ,  z,  c y l i n d r i c a l  c o o r d i n a t e s  
r e f e r r e d ,  r e s p e c t i v e l y ,  to  R and 1; u ,  v,  l ong i tud ina l  and r a d i a l  v e l o c i t y  c o m p o n e n t s ;  G, gas  m a s s  f low r a t e  
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per  second through the column c ross  section; N(z), power per unit length of arc;  ~, p, h, S~, a, e lect r ical  
conductivity, density,  enthalpy, heat-conduction function, and integrated volume radiation density; ~, radius 
of the column re fe r red  to R; S . ,  value of S1 on the column boundary; % -- ~ / ~ S ;  h s : ~n/aS; e s = Da/~S; S = 
S 1-S~ ; q~, qe, energy losses  per unit length of the positive column per  unit t ime for  the heat conduction and 
the radiaticn. 
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THERMAL MODE OF A LAMP OPERATING 

IN THE PULSE MODE 

G. N. Dul'nev, L. A. Savintseva, 
and A. V. Sharkov 

UDC 536.2 

A method of computing the thermal  modes of lamps is proposed and the passage to the analysis 
of thermo0ptical  distort ions occur r ing  in their  active elements is realized.  

The effective conversion of pumping energy into heat causes optical inhomogeneity of the active elements. 
In turn, the optical inhomogeneity results in the appearance of a thermal lens, birefringence, divergence of 

the radiation. Hence, an analysis of these parameters is one of the fundamental problems occurring in the pro- 
duction of lamps. 

In numerous papers devoted to the analysis of the thermal modes of lamps, the thermal state of just the 
active element is examined as a rule, without taking into account its relation to the other elements in the sys- 
tem [1-6]. At the same time, the thermal analyses do not permit a judgment about the quality of system opera- 
tion. This is explained by the indirect influence of the thermal effects. Papers devoted to the investigation of 
thermooptical distortions in the active element are either based on a known temperature field, or are experi- 
mental in nature [7-10]. In this connection, the problem of developing thermal and mathematical models of 
lamps, the production of methods of analyzing their thermal mode, and the passage to an analysis of the ther- 
mooptical distortions in the active element is quite urgent. 

This paper is devoted to the production of a method of analyzing the thermal mode of a lamp. The ther- 

mal mode of the active element is investigated in greatest detail, and the thermooptical distortions that occur 
are determined. The sequence presented below for the analysis is common to a broad class of constructions 
of lamps operating in the pulse mode. 

Let us examine the example of analyzing the thermal mode of the lamp displayed schematically in Fig. i. 
It consists of the following main elements: a cylindrical active element 1 fabricated from glass; two pumping 
lamps 2 operating in the single pulse mode; a reflecter 3, and a housing 4. 
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